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Thickness optimization is considered for a multilayer spherical shell that damps 
the amplitude of the internal temperature fluctuations. 

In [I, 2], there are discussions of optimizing the mass (thickness) of planar layered 
heat-shield panels to damp out external temperature perturbations acting on one surface to a 
given level. A major feature was that the panel can be made of a finite set of materials. 
The number, dimensions, and materials in the layers are determined by solving the correspond- 
ing optimal-control problem. Here we consider the spherically symmetrical case. The opti- 
mization is formulated as follows. 

Using a finite set of materials, we have to synthesize a layered sphere of minimal thick- 
ness that will damp the amplitude of the thermal oscillations T0(T)=~e,[A0exp (i~)] acting on 
the inner surface by a given factor. Here ~=2~/T* and Ao is the complex amplitude. The in- 
ternal radius Ro is specified. 

The controls are provided by the thermal conductivity distribution over the radius %(r) 
and the outside radius R. A knowledge of %(r) enables one to determine simultaneously the 
number, thicknesses, and materials in the layers. 

Because the set of materials is discrete, %(r) is a piecewise-constant function, whose 
value range belongs to a finite discrete set: 

%(0 ~ { % ~ : r ~ < r < r , + l ,  s =  1, . . ~ ,  S } ,  (I) 

%s E A = {AL A = . . . . .  A~}. ( 2 )  

Set  A c o n s i s t s  o f  t h e  t h e r m a l  c o n d u c t i v i t i e s  of  the  g i v e n  s e t  o f  m a t e r i a l s .  

In the periodic steady state, one utilizes the linearity to represent the temperature 
pattern within the layered sphere as 

T (r, ~) = Re [A (r) exp (i~T)]. (3) 

We i n t r o d u c e  t h e  c o n t i n u o u s  f u n c t i o n s  y l ( r )  = A(r)  and y 2 ( r )  = % ( r ) A r ( r ) ,  which  a re  t h e  com- 
p l e x  a m p l i t u d e s  of  the  t e m p e r a t u r e  and h e a t  f l u x .  The t h e r m a l - c o n d u c t i o n  e q u a t i o n  i s  used  
w i t h  i d e a l  c o n t a c t  be tween  the  l a y e r s  t o  d e r i v e  t h e  f o l l o w i n g  e q u a t i o n s  f o r  Yx and y=:  

1 , i(o% 2 
y~ =-fu~-& y~= ~yl---y~-f~ (4) 

a (~) r 

The boundary conditions are as follows: 

(R0) = ~1 [~ (R0) -- A0], y~ (R) ~ ~ (R). (5) 

System (4) i s  g iven  t h r o u g h o u t  the  i n t e r v a l  [Ro, R] ;  by v i r t u e  o f  (1) and ( 2 ) ,  t h e  r i g h t  
s i d e s  i n  (4) a re  p i e c e w i s e c o n t i n u o u s .  We d e s c r i b e  t h e  f u n c t i o n a l s  a p p e a r i n g  in  t h e  o p t i m i -  
z a t i o n  formulation. The functional to be minimized is 

R- 

Po [ ;~(0,  R] ---- f ~ d r  = ~ _ Ro. (6) 

The eonstraint imposed on the amplitude of T(R, T) is put as 
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TABLE i. Thermophysical Properties of the Initial Ma- 
terial Set 

Material 
number Material 

Plates: 
mineral wool 
mineral wool 
wood fiber 

Foamed concrete 
Arbolite 
Foamed concrete 
Foamed concrete 
Plywood 

;v,W/(m. K) a.l:o', rn~l 
~ O  

0,0516 0,417 
0,0671 0,309 
0,0774 0,076 
0,I032 0,278 
O, 1204 0,088 
0,1548 0,311 
0,215 0,347 
0,086 0,084 

o. kg/m~ 

200 
350 
600 
600 
800 
800 

1000 
600 

F~ I~ (r), R] ~ y~ (R) y~-~ (R) -- ~2 IAI] = 0. (7) 

Here q i s  a f a c t o r  d e f i n i n g  t he  d e g r e e  o f  damping f o r  t h e  a m p l i t u d e  o f  t h e  e x t e r n a l  p e r t u r b a -  
t i o n s ,  while the overbar denotes the complex conjugate. 

The minimization is formulated as follows. Among the piecewise-constant function %(r) 
defined by (I) and (2) and the numbers R ~ [Ro, ~)we have to find a pair (%~ R~ t) 
that minimizes the functional of (6) subject to (7). The phase variable y, in (7) satisfies 
the boundary-value problem of (4) and (5). 

The main feature of this problem is that the region for the values of the control func- 
tion in (2) is discrete, which does not allow us to follow the usual approach of constructing 
small variations in the uniform norm: 

t16Xtl = max ]8~(r)l. 
re[R~, R] 

It is therefore important to use needle-type variations [3] in deriving the necessary opti- 
mality conditions and in constructing the algorithm. By variation in the control function 
l(r) we understand a functional X*(r) taking the form 

{~;  rEM, ~EA, 
s ,%(r); r~M,  

where M ~ [Ro ~, R] is a set whose measure is small.- A variation in the control {~*(r), ~R} 
generates the following variations in the functionals 8Fo and ~FI [4] 

and 

�9 ~Fo [~* (r),  8R] = ~R (8) 

Here [={[i, [2}; <', "> is the scalar product. The conjugate variables ~={~i, ~=} and ~0 
--{~b q2} satisfy the boundary-value problems 

, 1 ico~ ~1 = - i - r  2 %  r . . . . . . .  ~ ,  
r a (;9 

r (Ro) = ~ r  (Ro), r (R) = ~ r  (R) + 2u1 (R) 

1 im~ 2 

a (~0 r 

q~ (R0) = ~ml (R0), 

[ 1 1 ,  q~.. (R) = ~. ~p1 (R) + -s y~ (R) a (X) y~ (R) -- 2r y~ (R). 

(9) 

(lO) 
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Fig. i. Examples of spherical shells optimal 
in thickness: I) material 1 from Table 2; 2) 
material 3; 3) material 5; Ro, m. 

As the constraint ~FI = 0 applies to the perturbed control, the variation in the minimized 
functional can finally be put as 

6Fo[X*, 8R] = ][H(H, 4, ~, X)--H (Y, 4, ~, ~)] dr, 
M 

wh e re 

H(y ,  4, r ~ ) =  Re [ Y~r 
L 

(ll) 

][ 1 a(~) Y14, 2 @ Ytq~ r " (12) 

For the control {l(r), R} to be optimal, it is necessary to obey the condition ~Fo ~ 0 
for all permissible variations. As the set with small measure M can be chosen everywhere com- 
pact in the interval r@[R0, R~ , the latter condition is equivalent to the following: 

H(y,  4, ~, ~OP~(=)maxH (y, 4, ~, ~), (13) 

which applies for almost all r. The necessary optimality conditions can be formulated as 
follows. Let {l~ R~ t} be the optimal control that minimizes (6), while y = {y,, y=} 
is the corresponding phase locus. Then there exist vector functions ~={41, 42} and ~ 
=[~I, ~2}, defined from (9) and (i0) and such that the Hamilton function of (12) constructed 
with them attains its maximum value with respect to the argument ~ on the optimum control 
for almost all rE[Ro, R]. 

Expression (ii) for the increment in Fo is used to construct a minimizing control se- 
quence [4]. Each step consists in sequential improvement in the control on the small-measure 
sets Mi, each of which consists of sufficiently small segments into which [Ro, R] is divided. 
If %opn takes the same value on two or more successive segments, these are all combined into 
one homogeneous layer. 

We consider the following problem as an example. The materials given in Table 1 are to 
be used in designing a layered sphere of minimal thickness to damp temperature-oscillation 
amplitudes by a factor 25 (n = 0.04). The coefficients at and ~2 in the boundary conditions 
of (5) are correspondingly 23.2 and 0 (W/m='K). As the small-measure set we sequentially 
take small segments of length:0.25 • 10 -2 m filling the segment [Ro, R]. 

Figure 1 shows optimal shells for Ro = 0.3, I, and 2 m. The shell becomes thicker as 
the internal radius increases because of increases in the second and penultimate layers. The 
optimum sphere consists of five layers. Out of the given set of materials, the optimum de- 
sign contains the first, third, and fifth. Total shell thicknesses 14.5, 15.75, and 16 cm 
correspondingly for Ro = 0.3, i, and 2 m. 
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One can compare these spherical shells with analogous planar layered panels designed 
for the same conditions [4], which shows that the thickness and structure of a spherical 
shell tend to those for a planar panel as the radius increases; the two become virtually iden- 
tical for Ro > 2 m. 

NOTATION 

r, current radius; Ro, inside radius of sphere; R, outside radius; l, a, p, thermal con- 
ductivity, thermal diffusivity, and density, respectively; T, temperature; T, time; T*, peri- 
od; ~, frequency of temperature fluctuations; al, a2, heat-transfer coefficients. 

i. 

. 

3~ 

4. 
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AN INVERSE STEFAN'S PROBLEM IN CASTING MULTICOMPONENT ALLOYS 

Ya. F. Rutner UDC 536.2 

A model is considered that incorporates the feature that melting (crystallization) 
occurs over a certain temperature range, and it is shown that the solution to the 
internal inverse problem is unique in one such formulation. 

Determining the temperature pattern in a casting during crystallization is a nonlinear 
problem of the free-boundary class, in which part of the boundary is unspecified and must be 
determined when the differential equations are solved by the use of an additional boundary 
condition at that part. This relationship is readily derived from the heat-balance equation 
and is called Stefan's condition, which in the one-dimensional case takes the form 

[ ~ -~xO Tx(x, t)--~,e O----T2(x,ox 0]Ix=s(~) ---- rys '  (0" 

There are many papers on this topic, but in them it is either assumed that the crystal- 
lization occurs at a fixed temperature rather than over a certain range or that the treat- 
ment can be reduced to that. 

We consider a schematic model for the phase-transition zone in castin~ a multicomponent 
alloy. During melting (cooling), a transitional layer is formed, which may be considered as 
a thermally active resistance. 

Let the transitional layer have thickness ~ > 0, which may be fairly small. We denote 
by Ro(x) the thermal-resistance density in the transitional laver, Ro(x) = R'(x), while ro(x~ 
denotes the density of the phase-transition latent heat, ro(x) = r'(x); we now apply Kirchoff's 
and Ohm's laws to the part Ix, x + dx] of the transition layer to get 

dI (x,  t) -- ys'  (t) ro (x) dx, dT (x, t) ----- I (x, t) Ro (x) dx, 
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